大数据架构师,带你深入理解HadoopYARN架构设计要点,不来别后悔
connygpt 2024-11-07 09:15 10 浏览
前言
YARN是开源项目Hadoop的一个资源管理系统,最初设计是为了解决Hadoop中MapReduce计算框架中的资源管理问题,但是现在它已经是一个更加通用的资源管理系统,可以把MapReduce计算框架作为一个应用程序运行在YARN系统之上,通过YARN来管理资源。如果你的应用程序也需要借助YARN的资源管理功能,你也可以实现YARN提供的编程API,将你的应用程序运行于YARN之上,将资源的分配与回收统一交给YARN去管理,可以大大简化资源管理功能的开发。当前,也有很多应用程序已经可以构建于YARN之上,如Storm、Spark等计算框架。
YARN整体架构
YARN是基于Master/Slave模式的分布式架构,我们先看一下,YARN的架构设计,如图所示(来自官网文档):
上图,从逻辑上定义了YARN系统的核心组件和主要交互流程,各个组件说明如下:
- YARN Client
YARN Client提交Application到RM,它会首先创建一个Application上下文件对象,并设置AM必需的资源请求信息,然后提交到RM。YARN Client也可以与RM通信,获取到一个已经提交并运行的Application的状态信息等,具体详见后面ApplicationClientProtocol协议的分析说明。
- ResourceManager(RM)
RM是YARN集群的Master,负责管理整个集群的资源和资源分配。RM作为集群资源的管理和调度的角色,如果存在单点故障,则整个集群的资源都无法使用。在2.4.0版本才新增了RM HA的特性,这样就增加了RM的可用性。
- NodeManager(NM)
NM是YARN集群的Slave,是集群中实际拥有实际资源的工作节点。我们提交Job以后,会将组成Job的多个Task调度到对应的NM上进行执行。Hadoop集群中,为了获得分布式计算中的Locality特性,会将DN和NM在同一个节点上运行,这样对应的HDFS上的Block可能就在本地,而无需在网络间进行数据的传输。
- Container
Container是YARN集群中资源的抽象,将NM上的资源进行量化,根据需要组装成一个个Container,然后服务于已授权资源的计算任务。计算任务在完成计算后,系统会回收资源,以供后续计算任务申请使用。Container包含两种资源:内存和CPU,后续Hadoop版本可能会增加硬盘、网络等资源。
- ApplicationMaster(AM)
AM主要管理和监控部署在YARN集群上的Application,以MapReduce为例,MapReduce Application是一个用来处理MapReduce计算的服务框架程序,为用户编写的MapReduce程序提供运行时支持。通常我们在编写的一个MapReduce程序可能包含多个Map Task或Reduce Task,而各个Task的运行管理与监控都是由这个MapReduce Application来负责,比如运行Task的资源申请,由AM向RM申请;启动/停止NM上某Task的对应的Container,由AM向NM请求来完成。
下面,我们基于Hadoop 2.6.0的YARN源码,来探讨YARN内部实现原理。
YARN协议
YARN是一个分布式资源管理系统,它包含了分布的多个组件,我们可以通过这些组件之间设计的交互协议来说明,如图所示:
下面我们来详细看看各个协议实现的功能:
- ApplicationClientProtocol(Client -> RM)
ResourceTracker(NM -> RM)
YARN RPC实现
1.X版本的Hadoop使用默认实现的Writable协议作为RPC协议,而在2.X版本,重写了RPC框架,改成默认使用Protobuf协议作为Hadoop的默认RPC通信协议。 YARN RPC的实现,如下面类图所示:
通过上图可以看出,RpcEngine有两个实现:WritableRpcEngine和ProtobufRpcEngine,默认使用ProtobufRpcEngine,我们可以选择使用1.X默认的RPC通信协议,甚至可以自定义实现。
ResourceManager内部原理
RM是YARN分布式系统的主节点,ResourceManager服务进程内部有很多组件提供其他服务,包括对外RPC服务,已经维护内部一些对象状态的服务等,RM的内部结构如图所示:
上图中RM内部各个组件(Dispatcher/EventHandler/Service)的功能,可以查看源码。这里,说一下ResourceScheduler组件,它是RM内部最重要的一个组件,用它来实现资源的分配与回收,它提供了一定算法,在运行时可以根据算法提供的策略来对资源进行调度。YARN内部有3种资源调度策略的实现:FifoScheduler、FairScheduler、CapacityScheduler,其中默认实现为CapacityScheduler。CapacityScheduler实现了资源更加细粒度的分配,可以设置多级队列,每个队列都有一定的容量,即对队列设置资源上限和下限,然后对每一级别队列分别再采用合适的调度策略(如FIFO)进行调度。如果我们想实现自己的资源调度策略,可以直接实现YARN的资源调度接口ResourceScheduler,然后修改yarn-site.xml中的配置项yarn.resourcemanager.scheduler.class即可。
NodeManager内部原理
NM是YARN系统中实际持有资源的从节点,也是实际用户程序运行的宿主节点,内部结构如图所示:
上图中NM内部各个组件(Dispatcher/EventHandler/Service)的功能,可以查看源码,不再累述。
事件处理机制
事件处理可以分成2大类,一类是同步处理事件,事件处理过程会阻塞调用进程,通常这样的事件处理逻辑非常简单,不会长时间阻塞;另一类就是异步处理处理事件,通常在接收到事件以后,会有一个用来派发事件的Dispatcher,将事件发到对应的事件队列中,这采用生产者-消费者模式,消费者这会监视着队列,并从取出事件进行异步处理。YARN中到处可以见到事件处理,其中比较特殊一点的就是将状态机(StateMachine)作为一个事件处理器,从而通过事件来触发特定对象状态的变迁,通过这种方式来管理对象状态。我们先看一下YARN中事件处理的机制,以ResourceManager端为例,如下图所示:
产生的事件通过Dispatcher进行派发并进行处理,如果EventHandler处理逻辑比较简单,直接同步处理,否则可能会采用异步处理的方式。在EventHandler处理的过程中,还可能产生新的事件Event,然后再次通过RM的Dispatcher进行派发,而后处理。
状态机
我们以RM端管理的RMAppImpl对象为例,它表示一个Application运行过程中,在RM端的所维护的Application的状态,该对象对应的所有状态及其状态转移路径,如下图所示:
在上图中如果加上触发状态转移的事件及其类型,可能整个图会显得很乱,所以这里,我详细画了一个分图,用来说明,每一个状态的变化都是有哪种类型的事件触发的,根据这个图,可以方便地阅读源码,如下图所示:
NMLivelinessMonitor源码分析实例
YARN主要采用了Dispatcher+EventHandler+Service这样的抽象,将所有的内部/外部组件采用这种机制来实现,由于存在很多的Service和EventHandler,而且有的组件可能既是一个Service,同时还是一个EventHandler,所以在阅读代码的时候可能会感觉迷茫,这里我给出了一个阅读NMLivelinessMonitor服务的实例,仅供想研究源码的人参考。NMLivelinessMonitor是ResourceManager端的一个监控服务实现,它主要是用来监控注册的节点的Liveliness状态,这里是监控NodeManager的状态。该服务会周期性地检查NodeManager的心跳信息来确保注册到ResourceManager的NodeManager当前处于活跃状态,可以执行资源分配以及处理计算任务,在NMLivelinessMonitor类继承的抽象泛型类AbstractLivelinessMonitor中有一个Map,如下所示:
private Map<O, Long> running = new HashMap<O, Long>();
这里面O被替换成了NodeId,而值类型Long表示时间戳,也就是表达了一个NodeManager向ResourceManager最后发送心跳信息时间戳,通过检测running中的时间戳;来判断NodeManager是否可以正常使用。在ResourceManager中可以看到,NMLivelinessMonitor的实例是其一个成员:
protected NMLivelinessMonitor nmLivelinessMonitor;
看一下NMLivelinessMonitor类的实现,它继承自抽象泛型类AbstractLivelinessMonitor,看NMLivelinessMonitor类的声明:
public class NMLivelinessMonitor extends AbstractLivelinessMonitor<NodeId>
在类实现中,有一个重写(@Override)的protected的方法expire,如下所示:
@Override
protected void expire(NodeId id) {
dispatcher.handle(
new RMNodeEvent(id, RMNodeEventType.EXPIRE));
}
我们可以通过该类NMLivelinessMonitor抽象基类中看到调用expire方法的逻辑,是在一个内部线程类PingChecker中,代码如下所示:
private class PingChecker implements Runnable {
@Override
public void run() {
while (!stopped && !Thread.currentThread().isInterrupted()) {
synchronized (AbstractLivelinessMonitor.this) {
Iterator<Map.Entry<O, Long>> iterator =
running.entrySet().iterator();
//avoid calculating current time everytime in loop
long currentTime = clock.getTime();
while (iterator.hasNext()) {
Map.Entry<O, Long> entry = iterator.next();
if (currentTime > entry.getValue() + expireInterval) {
iterator.remove();
expire(entry.getKey()); // 调用抽象方法expire,会在子类中实现
LOG.info("Expired:" + entry.getKey().toString() +
" Timed out after " + expireInterval/1000 + " secs");
}
}
}
try {
Thread.sleep(monitorInterval);
} catch (InterruptedException e) {
LOG.info(getName() + " thread interrupted");
break;
}
}
}
}
这里面的泛型O在NMLivelinessMonitor类中就是NodeId,所以最关心的逻辑就是前面提到的NMLivelinessMonitor中的expire方法的实现。在expire方法中,调用了dispatcher的handle方法来处理,所以dispatcher应该是一个EventHandler对象,后面我们会看到,它其实是通过ResourceManager中的dispatcher成员,也就是AsyncDispatcher来获取到的(AsyncDispatcher内部有一个组合而成的EventHandler)。下面,我们接着看NMLivelinessMonitor是如何创建的,在ResourceManager.RMActiveServices类的serviceInit()方法中,代码如下所示:
nmLivelinessMonitor = createNMLivelinessMonitor();
addService(nmLivelinessMonitor);
跟踪代码继续看createNMLivelinessMonitor方法,如下所示:
private NMLivelinessMonitor createNMLivelinessMonitor() {
return new NMLivelinessMonitor(this.rmContext
.getDispatcher());
}
上面通过rmContext的getDispatcher获取到一个Dispatcher对象,来作为NMLivelinessMonitor构造方法的参数,我们需要看一下这个Dispatcher是如何创建的,查看ResourceManager.serviceInit方法,代码如下所示:
rmDispatcher = setupDispatcher();
addIfService(rmDispatcher);
rmContext.setDispatcher(rmDispatcher);
继续跟踪代码,setupDispatcher()方法实现如下所示:
private Dispatcher setupDispatcher() {
Dispatcher dispatcher = createDispatcher();
dispatcher.register(RMFatalEventType.class,
new ResourceManager.RMFatalEventDispatcher());
return dispatcher;
}
继续看createDispatcher()方法代码实现:
protected Dispatcher createDispatcher() {
return new AsyncDispatcher();
}
可以看到,在这里创建了一个AsyncDispatcher对象在创建的NMLivelinessMonitor实例中包含一个AsyncDispatcher实例。回到前面,我们需要知道这个AsyncDispatcher调用getEventHandler()返回的EventHandler的处理逻辑是如何的,NMLivelinessMonitor的代码实现如下所示:
public class NMLivelinessMonitor extends AbstractLivelinessMonitor<NodeId> {
private EventHandler dispatcher;
public NMLivelinessMonitor(Dispatcher d) {
super("NMLivelinessMonitor", new SystemClock());
this.dispatcher = d.getEventHandler(); // 调用AsyncDispatcher的getEventHandler()方法获取EventHandler
}
public void serviceInit(Configuration conf) throws Exception {
int expireIntvl = conf.getInt(YarnConfiguration.RM_NM_EXPIRY_INTERVAL_MS,
YarnConfiguration.DEFAULT_RM_NM_EXPIRY_INTERVAL_MS);
setExpireInterval(expireIntvl);
setMonitorInterval(expireIntvl/3);
super.serviceInit(conf);
}
@Override
protected void expire(NodeId id) {
dispatcher.handle(
new RMNodeEvent(id, RMNodeEventType.EXPIRE));
}
}
查看AsyncDispatcher类的getEventHandler()方法,代码如下所示:
@Override
public EventHandler getEventHandler() {
if (handlerInstance == null) {
handlerInstance = new GenericEventHandler();
}
return handlerInstance;
}
可见,这里面无论是第一次调用还是其他对象已经调用过该方法,这里面最终只有一个GenericEventHandler实例作为这个dispatcher的内部EventHandler实例,所以继续跟踪代码,看GenericEventHandler实现,如下所示:
class GenericEventHandler implements EventHandler<Event> {
public void handle(Event event) {
if (blockNewEvents) {
return;
}
drained = false;
/* all this method does is enqueue all the events onto the queue */
int qSize = eventQueue.size();
if (qSize !=0 && qSize %1000 == 0) {
LOG.info("Size of event-queue is " + qSize);
}
int remCapacity = eventQueue.remainingCapacity();
if (remCapacity < 1000) {
LOG.warn("Very low remaining capacity in the event-queue: "
+ remCapacity);
}
try {
eventQueue.put(event); // 将Event放入到队列eventQueue中
} catch (InterruptedException e) {
if (!stopped) {
LOG.warn("AsyncDispatcher thread interrupted", e);
}
throw new YarnRuntimeException(e);
}
};
}
将传入handle方法的Event丢进了eventQueue队列,也就是说GenericEventHandler是基于eventQueue的一个生产者,那么消费者是AsyncDispatcher内部的另一个线程,如下所示:
@Override
protected void serviceStart() throws Exception {
//start all the components
super.serviceStart();
eventHandlingThread = new Thread(createThread()); // 调用创建消费eventQueue队列中事件的线程
eventHandlingThread.setName("AsyncDispatcher event handler");
eventHandlingThread.start();
}
查看createThread()方法,如下所示:
Runnable createThread() {
return new Runnable() {
@Override
public void run() {
while (!stopped && !Thread.currentThread().isInterrupted()) {
drained = eventQueue.isEmpty();
// blockNewEvents is only set when dispatcher is draining to stop,
// adding this check is to avoid the overhead of acquiring the lock
// and calling notify every time in the normal run of the loop.
if (blockNewEvents) {
synchronized (waitForDrained) {
if (drained) {
waitForDrained.notify();
}
}
}
Event event;
try {
event = eventQueue.take(); // 从队列取出事件Event
} catch(InterruptedException ie) {
if (!stopped) {
LOG.warn("AsyncDispatcher thread interrupted", ie);
}
return;
}
if (event != null) {
dispatch(event); // 分发处理该有效事件Event
}
}
}
};
}
可以看到,从eventQueue队列中取出Event,然后调用dispatch(event);来处理事件,看dispatch(event)方法,如下所示:
@SuppressWarnings("unchecked")
protected void dispatch(Event event) {
//all events go thru this loop
if (LOG.isDebugEnabled()) {
LOG.debug("Dispatching the event " + event.getClass().getName() + "."
+ event.toString());
}
Class<? extends Enum> type = event.getType().getDeclaringClass();
try{
EventHandler handler = eventDispatchers.get(type); // 通过event获取到事件类型,再根据事件类型获取到已经注册的EventHandler
if(handler != null) {
handler.handle(event); // 使用对应的EventHandler处理事件event
} else {
throw new Exception("No handler for registered for " + type);
}
} catch (Throwable t) {
//TODO Maybe log the state of the queue
LOG.fatal("Error in dispatcher thread", t);
// If serviceStop is called, we should exit this thread gracefully.
if (exitOnDispatchException
&& (ShutdownHookManager.get().isShutdownInProgress()) == false
&& stopped == false) {
LOG.info("Exiting, bbye..");
System.exit(-1);
}
}
}
可以看到,根据已经注册的Map<Class, EventHandler> eventDispatchers表,选择对应的EventHandler来执行实际的事件处理逻辑。这里,再看看这个EventHandler是在哪里住的。前面已经看到,NMLivelinessMonitor类的expire方法中,传入的是new RMNodeEvent(id, RMNodeEventType.EXPIRE),我们再查看ResourceManager.RMActiveServices.serviceInit()方法:
// Register event handler for RmNodes
rmDispatcher.register(
RMNodeEventType.class, new NodeEventDispatcher(rmContext)); // 注册:事件类型RMNodeEventType,EventHandler实现类NodeEventDispatcher
可见RMNodeEventType类型的事件是使用ResourceManager.NodeEventDispatcher这个EventHandler来处理的,同时它也是一个Dispatcher,现在再看NodeEventDispatcher的实现:
@Private
public static final class NodeEventDispatcher implements
EventHandler<RMNodeEvent> {
private final RMContext rmContext;
public NodeEventDispatcher(RMContext rmContext) {
this.rmContext = rmContext;
}
@Override
public void handle(RMNodeEvent event) {
NodeId nodeId = event.getNodeId();
RMNode node = this.rmContext.getRMNodes().get(nodeId); // 调用getRMNodes()获取到一个ConcurrentMap<NodeId, RMNode>,它维护每个NodeId的状态(RMNode是一个状态机对象)
if (node != null) {
try {
((EventHandler<RMNodeEvent>) node).handle(event); // RMNode的实现为RMNodeImpl,它也是一个EventHandler
} catch (Throwable t) {
LOG.error("Error in handling event type " + event.getType()
+ " for node " + nodeId, t);
}
}
}
}
这个里面还没有真正地去处理,而是基于RMNode状态机对象来进行转移处理,所以我们继续看RMNode的实现RMNodeImpl,因为前面事件类型RMNodeEventType.EXPIRE,我们看状态机创建时对该事件类型的转移动作是如何注册的:
private static final StateMachineFactory<RMNodeImpl,
NodeState,
RMNodeEventType,
RMNodeEvent> stateMachineFactory
= new StateMachineFactory<RMNodeImpl,
NodeState,
RMNodeEventType,
RMNodeEvent>(NodeState.NEW)
...
.addTransition(NodeState.RUNNING, NodeState.LOST,
RMNodeEventType.EXPIRE,
new DeactivateNodeTransition(NodeState.LOST))
...
.addTransition(NodeState.UNHEALTHY, NodeState.LOST,
RMNodeEventType.EXPIRE,
new DeactivateNodeTransition(NodeState.LOST))
在ResourceManager端维护的NodeManager的信息使用RMNodeImpl来表示(在内存中保存ConcurrentMap),所以当前如果expire方法被调用,RMNodeImpl会根据状态机对象中已经注册的前置转移状态(pre-transition state)、后置转移状态(post-transition state)、事件类型(event type)、转移Hook程序,来对事件进行处理,并使当前RMNodeImpl的状态由前置转移状态更新为后置转移状态。对于上面代码,如果当前RMNodeImpl状态是NodeState.RUNNING,事件为RMNodeEventType.EXPIRE类型,则会调用Hook程序实现DeactivateNodeTransition,状态更新为NodeState.LOST;如果当前RMNodeImpl状态是NodeState.UNHEALTHY,事件为RMNodeEventType.EXPIRE类型,则会调用Hook程序实现DeactivateNodeTransition,状态更新为NodeState.LOST。具体地,每个Transition的处理逻辑如何,可以查看对应的Transition实现代码。
觉得文章不错的话,可以转发此文关注小编,之后给大家持续更新干货文章~~
相关推荐
- 3分钟让你的项目支持AI问答模块,完全开源!
-
hello,大家好,我是徐小夕。之前和大家分享了很多可视化,零代码和前端工程化的最佳实践,今天继续分享一下最近开源的Next-Admin的最新更新。最近对这个项目做了一些优化,并集成了大家比较关注...
- 干货|程序员的副业挂,12个平台分享
-
1、D2adminD2Admin是一个完全开源免费的企业中后台产品前端集成方案,使用最新的前端技术栈,小于60kb的本地首屏js加载,已经做好大部分项目前期准备工作,并且带有大量示例代码,助...
- Github标星超200K,这10个可视化面板你知道几个
-
在Github上有很多开源免费的后台控制面板可以选择,但是哪些才是最好、最受欢迎的可视化控制面板呢?今天就和大家推荐Github上10个好看又流行的可视化面板:1.AdminLTEAdminLTE是...
- 开箱即用的炫酷中后台前端开源框架第二篇
-
#头条创作挑战赛#1、SoybeanAdmin(1)介绍:SoybeanAdmin是一个基于Vue3、Vite3、TypeScript、NaiveUI、Pinia和UnoCSS的清新优...
- 搭建React+AntDeign的开发环境和框架
-
搭建React+AntDeign的开发环境和框架随着前端技术的不断发展,React和AntDesign已经成为越来越多Web应用程序的首选开发框架。React是一个用于构建用户界面的JavaScrip...
- 基于.NET 5实现的开源通用权限管理平台
-
??大家好,我是为广大程序员兄弟操碎了心的小编,每天推荐一个小工具/源码,装满你的收藏夹,每天分享一个小技巧,让你轻松节省开发效率,实现不加班不熬夜不掉头发,是我的目标!??今天小编推荐一款基于.NE...
- StreamPark - 大数据流计算引擎
-
使用Docker完成StreamPark的部署??1.基于h2和docker-compose进行StreamPark部署wgethttps://raw.githubusercontent.com/a...
- 教你使用UmiJS框架开发React
-
1、什么是Umi.js?umi,中文可发音为乌米,是一个可插拔的企业级react应用框架。你可以将它简单地理解为一个专注性能的类next.js前端框架,并通过约定、自动生成和解析代码等方式来辅助...
- 简单在线流程图工具在用例设计中的运用
-
敏捷模式下,测试团队的用例逐渐简化以适应快速的发版节奏,大家很早就开始运用思维导图工具比如xmind来编写测试方法、测试点。如今不少已经不少利用开源的思维导图组件(如百度脑图...)来构建测试测试...
- 【开源分享】神奇的大数据实时平台框架,让Flink&Spark开发更简单
-
这是一个神奇的框架,让Flink|Spark开发更简单,一站式大数据实时平台!他就是StreamX!什么是StreamX大数据技术如今发展的如火如荼,已经呈现百花齐放欣欣向荣的景象,实时处理流域...
- 聊聊规则引擎的调研及实现全过程
-
摘要本期主要以规则引擎业务实现为例,陈述在陌生业务前如何进行业务深入、调研、技术选型、设计及实现全过程分析,如果你对规则引擎不感冒、也可以从中了解一些抽象实现过程。诉求从硬件采集到的数据提供的形式多种...
- 【开源推荐】Diboot 2.0.5 发布,自动化开发助理
-
一、前言Diboot2.0.5版本已于近日发布,在此次发布中,我们新增了file-starter组件,完善了iam-starter组件,对core核心进行了相关优化,让devtools也支持对IAM...
- 微软推出Copilot Actions,使用人工智能自动执行重复性任务
-
IT之家11月19日消息,微软在今天举办的Ignite大会上宣布了一系列新功能,旨在进一步提升Microsoft365Copilot的智能化水平。其中最引人注目的是Copilot...
- Electron 使用Selenium和WebDriver
-
本节我们来学习如何在Electron下使用Selenium和WebDriver。SeleniumSelenium是ThoughtWorks提供的一个强大的基于浏览器的开源自动化测试工具...
- Quick 'n Easy Web Builder 11.1.0设计和构建功能齐全的网页的工具
-
一个实用而有效的应用程序,能够让您轻松构建、创建和设计个人的HTML网站。Quick'nEasyWebBuilder是一款全面且轻巧的软件,为用户提供了一种简单的方式来创建、编辑...
- 一周热门
- 最近发表
- 标签列表
-
- kubectlsetimage (56)
- mysqlinsertoverwrite (53)
- addcolumn (54)
- helmpackage (54)
- varchar最长多少 (61)
- 类型断言 (53)
- protoc安装 (56)
- jdk20安装教程 (60)
- rpm2cpio (52)
- 控制台打印 (63)
- 401unauthorized (51)
- vuexstore (68)
- druiddatasource (60)
- 企业微信开发文档 (51)
- rendertexture (51)
- speedphp (52)
- gitcommit-am (68)
- bashecho (64)
- str_to_date函数 (58)
- yum下载包及依赖到本地 (72)
- jstree中文api文档 (59)
- mvnw文件 (58)
- rancher安装 (63)
- nginx开机自启 (53)
- .netcore教程 (53)