一起学 WebGL:感受三维世界之视图矩阵
connygpt 2024-11-18 10:40 6 浏览
大家好,我是前端西瓜哥。之前绘制的图形都是在 XY 轴所在的平面上,这次我们来加入一点深度信息 z,带你走入三维的世界。
视图矩阵
对于一个立方体来说,我们从它的正前方看,不管距离它多远,也只能看到一个二维的正方形。因此我们需要引入 视图矩阵(view matrix)。它的作用就像是一个在特定位置的摄像头。
视图矩阵需要三个信息:
- 视点位置;
- 观察点位置;
- 上方向;
就好比我们站在某个位置看一个模型,眼睛的位置就是观察点,目光落在的点就是视点。我们站着看,上方向 就是朝上(y 正轴方向),躺着看就是水平方向,倒立着看就是朝下(y 负半轴方向)。
实际上我们并没有一个真正的视口,我们的世界坐标的正中心永远是原点,z 负半轴指向观察者。
但我们可以利用相对运动的原理,给图形做一个相反的操作,比如我往右边走 1 个单位去看模型,其实等价于我不懂,模型向左移动 1 个单位,它们的效果是一样的。
视图矩阵的算法实现如下:
function createViewMatrix(eyeX, eyeY, eyeZ, atX, atY, atZ, upX, upY, upZ) {
const normalize = (v) => {
const length = Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
return [v[0] / length, v[1] / length, v[2] / length];
};
const subtract = (v1, v2) => {
return [v1[0] - v2[0], v1[1] - v2[1], v1[2] - v2[2]];
};
const cross = (v1, v2) => {
return [
v1[1] * v2[2] - v1[2] * v2[1],
v1[2] * v2[0] - v1[0] * v2[2],
v1[0] * v2[1] - v1[1] * v2[0]
];
};
const zAxis = normalize(subtract([eyeX, eyeY, eyeZ], [atX, atY, atZ]));
const xAxis = normalize(cross([upX, upY, upZ], zAxis));
const yAxis = normalize(cross(zAxis, xAxis));
return new Float32Array([
xAxis[0],
yAxis[0],
zAxis[0],
0,
xAxis[1],
yAxis[1],
zAxis[1],
0,
xAxis[2],
yAxis[2],
zAxis[2],
0,
-(xAxis[0] * eyeX + xAxis[1] * eyeY + xAxis[2] * eyeZ),
-(yAxis[0] * eyeX + yAxis[1] * eyeY + yAxis[2] * eyeZ),
-(zAxis[0] * eyeX + zAxis[1] * eyeY + zAxis[2] * eyeZ),
1
]);
}
视图坐标的实现细节不讲,不重要。(顺带一提,上面的算法由 Github Copilot 生成)
通过这个方法计算出矩阵,传入到顶点着色器的矩阵变量中,和顶点位置计算即可。
const viewMatrix = createViewMatrix(0.2, 0.25, 0.25, 0, 0, 0, 0, 1, 0);
const u_ViewMatrix = gl.getUniformLocation(gl.program, "u_ViewMatrix");
gl.uniformMatrix4fv(u_ViewMatrix, false, viewMatrix);
其他的创建缓冲区的逻辑就不讲了,之前的文章都讲过了。
完整代码
贴一下完整代码:
/** @type {HTMLCanvasElement} */
const canvas = document.querySelector("canvas");
const gl = canvas.getContext("webgl");
const vertexShaderSrc = `
attribute vec4 a_Position;
attribute vec4 a_Color;
uniform mat4 u_ViewMatrix;
varying vec4 v_Color;
void main() {
gl_Position = u_ViewMatrix * a_Position;
v_Color = a_Color;
}
`;
const fragmentShaderSrc = `
precision mediump float;
varying vec4 v_Color;
void main() {
gl_FragColor = v_Color;
}
`;
/**** 渲染器生成处理 ****/
// 创建顶点渲染器
const vertexShader = gl.createShader(gl.VERTEX_SHADER);
gl.shaderSource(vertexShader, vertexShaderSrc);
gl.compileShader(vertexShader);
// 创建片元渲染器
const fragmentShader = gl.createShader(gl.FRAGMENT_SHADER);
gl.shaderSource(fragmentShader, fragmentShaderSrc);
gl.compileShader(fragmentShader);
// 程序对象
const program = gl.createProgram();
gl.attachShader(program, vertexShader);
gl.attachShader(program, fragmentShader);
gl.linkProgram(program);
gl.useProgram(program);
gl.program = program;
// prettier-ignore
const verticesColors = new Float32Array([
// 下方的红色三角形
0, 0.2, -0.2, 1, 0, 0, // 位置和颜色信息
-0.2, -0.2, -0.2, 1, 0, 0,
0.2, -0.2, -0.2, 1, 0, 0,
// 上方的黄色三角形
0, 0.2, 0, 1, 1, 0, // 点 1 的位置和颜色信息
-0.2, -0.2, 0, 1, 1, 0, // 点 2
0.2, -0.2, 0, 1, 1, 0, // 点 3
]);
// 每个数组元素的字节数
const SIZE = verticesColors.BYTES_PER_ELEMENT;
// 创建缓存对象
const vertexColorBuffer = gl.createBuffer();
// 绑定缓存对象到上下文
gl.bindBuffer(gl.ARRAY_BUFFER, vertexColorBuffer);
// 向缓存区写入数据
gl.bufferData(gl.ARRAY_BUFFER, verticesColors, gl.STATIC_DRAW);
// 获取 a_Position 变量地址
const a_Position = gl.getAttribLocation(gl.program, "a_Position");
gl.vertexAttribPointer(a_Position, 3, gl.FLOAT, false, SIZE * 6, 0);
gl.enableVertexAttribArray(a_Position);
const a_Color = gl.getAttribLocation(gl.program, "a_Color");
gl.vertexAttribPointer(a_Color, 3, gl.FLOAT, false, SIZE * 6, SIZE * 3);
gl.enableVertexAttribArray(a_Color);
/****** 视图矩阵 ****/
// prettier-ignore
// 取消下面一行注释,并注释下下一行代码,可观察没有使用视图矩阵的原始效果
// const viewMatrix = new Float32Array([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,0,0,1]);
const viewMatrix = createViewMatrix(0.2, 0.25, 0.25, 0, 0, 0, 0, 1, 0);
const u_ViewMatrix = gl.getUniformLocation(gl.program, "u_ViewMatrix");
gl.uniformMatrix4fv(u_ViewMatrix, false, viewMatrix);
/*** 绘制 ***/
// 清空画布,并指定颜色
gl.clearColor(0, 0, 0, 1);
gl.clear(gl.COLOR_BUFFER_BIT);
// 绘制三角形
gl.drawArrays(gl.TRIANGLES, 0, 6);
function createViewMatrix(eyeX, eyeY, eyeZ, atX, atY, atZ, upX, upY, upZ) {
const normalize = (v) => {
const length = Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
return [v[0] / length, v[1] / length, v[2] / length];
};
const subtract = (v1, v2) => {
return [v1[0] - v2[0], v1[1] - v2[1], v1[2] - v2[2]];
};
const cross = (v1, v2) => {
return [
v1[1] * v2[2] - v1[2] * v2[1],
v1[2] * v2[0] - v1[0] * v2[2],
v1[0] * v2[1] - v1[1] * v2[0]
];
};
const zAxis = normalize(subtract([eyeX, eyeY, eyeZ], [atX, atY, atZ]));
const xAxis = normalize(cross([upX, upY, upZ], zAxis));
const yAxis = normalize(cross(zAxis, xAxis));
return new Float32Array([
xAxis[0],
yAxis[0],
zAxis[0],
0,
xAxis[1],
yAxis[1],
zAxis[1],
0,
xAxis[2],
yAxis[2],
zAxis[2],
0,
-(xAxis[0] * eyeX + xAxis[1] * eyeY + xAxis[2] * eyeZ),
-(yAxis[0] * eyeX + yAxis[1] * eyeY + yAxis[2] * eyeZ),
-(zAxis[0] * eyeX + zAxis[1] * eyeY + zAxis[2] * eyeZ),
1
]);
}
demo 地址:
https://codesandbox.io/s/ijxwu2?file=/index.js
这里我绘制了红色和黄色两个三角形,红色在更下边,z 为 -0.2,黄色在上面一点,z 为 0。
应用视图矩阵前的效果。因为两者大小相同,黄色三角形完全盖住了红色。
应用视图矩阵后:
结尾
我是前端西瓜哥,欢迎关注我,学习更多 WebGL 知识。
今天简单讲了下让我们指定一个位置观察模型的方法:视图矩阵。
之前我们也讲了一个叫做模型矩阵的玩意,模型矩阵就好比一个三维软件,我们将一个模型导入到场景中,移动它的位置、缩放它的尺寸,旋转一下之类的。视图矩阵就好比通过一个摄像机的视角看到的世界。
不知道你发现没有,这里的两个三角形并没有近大远小的透视效果。此外,当我们的观察点位置非常靠右或靠左的时候,三角形会缺失部分。
关于这点,我会在下节讲解 可视空间,解答这些问题。
相关阅读,
一起学 WebGL:三角形加上渐变色
一起学 WebGL:复合矩阵
一起学 WebGL:图形变形以及矩阵变换
一起学 WebGL:图元的类型
一起学 WebGL:绘制三角形
一起学 WebGL:改变点的颜色
一起学 WebGL:动态绘制点
一起学 WebGL:动态绘制点
一起学 WebGL:绘制一个点
一起学 WebGL:坐标系
相关推荐
- 自学Python,写一个挨打的游戏代码来初识While循环
-
自学Python的第11天。旋转~跳跃~,我~闭着眼!学完循环,沐浴着while的光芒,闲来无事和同事一起扯皮,我说:“编程语言好神奇,一个小小的循环,竟然在生活中也可以找到原理和例子”,同事也...
- 常用的 Python 工具与资源,你知道几个?
-
最近几年你会发现,越来越多的人开始学习Python,工欲善其事必先利其器,今天纬软小编就跟大家分享一些常用的Python工具与资源,记得收藏哦!不然下次就找不到我了。1、PycharmPychar...
- 一张思维导图概括Python的基本语法, 一周的学习成果都在里面了
-
一周总结不知不觉已经自学Python一周的时间了,这一周,从认识Python到安装Python,再到基本语法和基本数据类型,对于小白的我来说无比艰辛的,充满坎坷。最主要的是每天学习时间有限。只...
- 三日速成python?打工人,小心钱包,别当韭菜
-
随着人工智能的热度越来越高,许多非计算机专业的同学们也都纷纷投入到学习编程的道路上来。而Python,作为一种相对比较容易上手的语言,也越来越受欢迎。网络上各类网课层出不穷,各式广告令人眼花缭乱。某些...
- Python自动化软件测试怎么学?路线和方法都在这里了
-
Python自动化测试是指使用Python编程语言和相关工具,对软件系统进行自动化测试的过程。学习Python自动化测试需要掌握以下技术:Python编程语言:学习Python自动化测试需要先掌握Py...
- Python从放弃到入门:公众号历史文章爬取为例谈快速学习技能
-
这篇文章不谈江流所专研的营销与运营,而聊一聊技能学习之路,聊一聊Python这门最简单的编程语言该如何学习,我完成的第一个Python项目,将任意公众号的所有历史文章导出成PDF电子书。或许我这个Py...
- 【黑客必会】python学习计划
-
阅读Python文档从Python官方网站上下载并阅读Python最新版本的文档(中文版),这是学习Python的最好方式。对于每个新概念和想法,请尝试运行一些代码片段,并检查生成的输出。这将帮助您更...
- 公布了!2025CDA考试安排
-
CDA数据分析师报考流程数据分析师是指在不同行业中专门从事行业数据搜集、整理、分析依据数据作出行业研究评估的专业人员CDA证书分为1-3级,中英文双证就业面广,含金量高!!?报考条件:满18...
- 一文搞懂全排列、组合、子集问题(经典回溯递归)
-
原创公众号:【bigsai】头条号:程序员bigsai前言Hello,大家好,我是bigsai,longtimenosee!在刷题和面试过程中,我们经常遇到一些排列组合类的问题,而全排列、组合...
- 「西法带你学算法」一次搞定前缀和
-
我花了几天时间,从力扣中精选了五道相同思想的题目,来帮助大家解套,如果觉得文章对你有用,记得点赞分享,让我看到你的认可,有动力继续做下去。467.环绕字符串中唯一的子字符串[1](中等)795.区...
- 平均数的5种方法,你用过几种方法?
-
平均数,看似很简单的东西,其实里面包含着很多学问。今天,分享5种经常会用到的平均数方法。1.算术平均法用到最多的莫过于算术平均法,考试平均分、平均工资等等,都是用到这个。=AVERAGE(B2:B11...
- 【干货收藏】如何最简单、通俗地理解决策树分类算法?
-
决策树(Decisiontree)是基于已知各种情况(特征取值)的基础上,通过构建树型决策结构来进行分析的一种方式,是常用的有监督的分类算法。决策树算法是机器学习中的一种经典算法,它通过一系列的规则...
- 面试必备:回溯算法详解
-
我们刷leetcode的时候,经常会遇到回溯算法类型题目。回溯算法是五大基本算法之一,一般大厂也喜欢问。今天跟大家一起来学习回溯算法的套路,文章如果有不正确的地方,欢迎大家指出哈,感谢感谢~什么是回溯...
- 「机器学习」决策树——ID3、C4.5、CART(非常详细)
-
决策树是一个非常常见并且优秀的机器学习算法,它易于理解、可解释性强,其可作为分类算法,也可用于回归模型。本文将分三篇介绍决策树,第一篇介绍基本树(包括ID3、C4.5、CART),第二篇介绍Ran...
- 大话AI算法: 决策树
-
所谓的决策树算法,通俗的说就是建立一个树形的结构,通过这个结构去一层一层的筛选判断问题是否好坏的算法。比如判断一个西瓜是否好瓜,有20条西瓜的样本提供给你,让你根据这20条(通过机器学习)建立起...
- 一周热门
- 最近发表
- 标签列表
-
- kubectlsetimage (56)
- mysqlinsertoverwrite (53)
- addcolumn (54)
- helmpackage (54)
- varchar最长多少 (61)
- 类型断言 (53)
- protoc安装 (56)
- jdk20安装教程 (60)
- rpm2cpio (52)
- 控制台打印 (63)
- 401unauthorized (51)
- vuexstore (68)
- druiddatasource (60)
- 企业微信开发文档 (51)
- rendertexture (51)
- speedphp (52)
- gitcommit-am (68)
- bashecho (64)
- str_to_date函数 (58)
- yum下载包及依赖到本地 (72)
- jstree中文api文档 (59)
- mvnw文件 (58)
- rancher安装 (63)
- nginx开机自启 (53)
- .netcore教程 (53)