百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 博客教程 > 正文

第14关k8s架构师课程之业务Prometheus监控实战一

connygpt 2024-12-16 11:37 9 浏览

服务监控

大家好,我是博哥爱运维。对于运维开发人员来说,不管是哪个平台服务,监控都是非常关键重要的。

在传统服务里面,我们通常会到zabbix、open-falcon、netdata来做服务的监控,但对于目前主流的K8s平台来说,由于服务pod会被调度到任何机器上运行,且pod挂掉后会被自动重启,并且我们也需要有更好的自动服务发现功能来实现服务报警的自动接入,实现更高效的运维报警,这里我们需要用到K8s的监控实现Prometheus,它是基于Google内部监控系统的开源实现。

Prometheus架构图

Prometheus是由golang语言编写,这样它的部署实际上是比较简单的,就一个服务的二进制包加上对应的配置文件即可运行,然而这种方式的部署过程繁琐并且效率低下,我们这里就不以这种传统的形式来部署Prometheus来实现K8s集群的监控了,而是会用到Prometheus-Operator来进行Prometheus监控服务的安装,这也是我们生产中常用的安装方式。

从本质上来讲Prometheus属于是典型的有状态应用,而其有包含了一些自身特有的运维管理和配置管理方式。而这些都无法通过Kubernetes原生提供的应用管理概念实现自动化。为了简化这类应用程序的管理复杂度,CoreOS率先引入了Operator的概念,并且首先推出了针对在Kubernetes下运行和管理Etcd的Etcd Operator。并随后推出了Prometheus Operator。

Prometheus Operator的工作原理

从概念上来讲Operator就是针对管理特定应用程序的,在Kubernetes基本的Resource和Controller的概念上,以扩展Kubernetes api的形式。帮助用户创建,配置和管理复杂的有状态应用程序。从而实现特定应用程序的常见操作以及运维自动化。

在Kubernetes中我们使用Deployment、DamenSet,StatefulSet来管理应用Workload,使用Service,Ingress来管理应用的访问方式,使用ConfigMap和Secret来管理应用配置。我们在集群中对这些资源的创建,更新,删除的动作都会被转换为事件(Event),Kubernetes的Controller Manager负责监听这些事件并触发相应的任务来满足用户的期望。这种方式我们成为声明式,用户只需要关心应用程序的最终状态,其它的都通过Kubernetes来帮助我们完成,通过这种方式可以大大简化应用的配置管理复杂度。

而除了这些原生的Resource资源以外,Kubernetes还允许用户添加自己的自定义资源(Custom Resource)。并且通过实现自定义Controller来实现对Kubernetes的扩展。

如下所示,是Prometheus Operator的架构示意图:

Prometheus的本质就是一组用户自定义的CRD资源以及Controller的实现,Prometheus Operator负责监听这些自定义资源的变化,并且根据这些资源的定义自动化地完成如Prometheus Server自身以及配置的自动化管理工作。

Prometheus Operator能做什么

要了解Prometheus Operator能做什么,其实就是要了解Prometheus Operator为我们提供了哪些自定义的Kubernetes资源,列出了Prometheus Operator目前提供的?4类资源:

  • Prometheus:声明式创建和管理Prometheus Server实例;
  • ServiceMonitor:负责声明式的管理监控配置;
  • PrometheusRule:负责声明式的管理告警配置;
  • Alertmanager:声明式的创建和管理Alertmanager实例。

简言之,Prometheus Operator能够帮助用户自动化的创建以及管理Prometheus Server以及其相应的配置。

实战操作篇一

在K8s集群中部署Prometheus Operator

我们这里用prometheus-operator来安装整套prometheus服务,建议直接用master分支即可,这也是官方所推荐的

https://github.com/prometheus-operator/kube-prometheus

开始安装

安装包和离线镜像包下载

https://cloud.189.cn/t/bM7f2aANnMVb (访问码:0nsj)

1. 解压下载的代码包
unzip kube-prometheus-master.zip
rm -f kube-prometheus-master.zip && cd kube-prometheus-master

2. 这里建议先看下有哪些镜像,便于在下载镜像快的节点上先收集好所有需要的离线docker镜像
# find ./ -type f |xargs grep 'image: '|sort|uniq|awk '{print $3}'|grep ^[a-zA-Z]|grep -Evw 'error|kubeRbacProxy'|sort -rn|uniq
quay.io/prometheus/prometheus:v2.22.1
quay.io/prometheus-operator/prometheus-operator:v0.43.2
quay.io/prometheus/node-exporter:v1.0.1
quay.io/prometheus/alertmanager:v0.21.0
quay.io/fabxc/prometheus_demo_service
quay.io/coreos/kube-state-metrics:v1.9.7
quay.io/brancz/kube-rbac-proxy:v0.8.0
grafana/grafana:7.3.4
gcr.io/google_containers/metrics-server-amd64:v0.2.01
directxman12/k8s-prometheus-adapter:v0.8.2

在测试的几个node上把这些离线镜像包都导入 docker load -i xxx.tar

3. 开始创建所有服务
kubectl create -f manifests/setup
kubectl create -f manifests/
过一会查看创建结果:
kubectl -n monitoring get all

# 附:清空上面部署的prometheus所有服务:
kubectl delete --ignore-not-found=true -f manifests/ -f manifests/setup

访问下prometheus的UI

# 修改下prometheus UI的service模式,便于我们访问
# kubectl -n monitoring patch svc prometheus-k8s -p '{"spec":{"type":"NodePort"}}'
service/prometheus-k8s patched

# kubectl -n monitoring get svc prometheus-k8s 
NAME             TYPE       CLUSTER-IP    EXTERNAL-IP   PORT(S)          AGE
prometheus-k8s   NodePort   10.68.23.79   <none>        9090:22129/TCP   7m43s

点击上方菜单栏Status --- Targets ,我们发现kube-controller-manager和kube-scheduler未发现

monitoring/kube-controller-manager/0 (0/0 up) 
monitoring/kube-scheduler/0 (0/0 up) 

接下来我们解决下这一个碰到的问题吧

注:如果发现下面不是监控的127.0.0.1,并且通过下面地址可以获取metric指标输出,那么这个改IP这一步可以不用操作

curl 10.0.1.201:10251/metrics curl 10.0.1.201:10252/metrics

# 这里我们发现这两服务监听的IP是127.0.0.1
# ss -tlnp|egrep 'controller|schedule'
LISTEN     0      32768  127.0.0.1:10251                    *:*                   users:(("kube-scheduler",pid=567,fd=5))
LISTEN     0      32768  127.0.0.1:10252                    *:*                   users:(("kube-controller",pid=583,fd=5))

问题定位到了,接下来先把两个组件的监听地址改为0.0.0.0

# 如果大家前面是按我设计的4台NODE节点,其中2台作master的话,那就在这2台master上把systemcd配置改一下
# 我这里第一台master  10.0.1.201
# sed -ri 's+127.0.0.1+0.0.0.0+g' /etc/systemd/system/kube-controller-manager.service 
# sed -ri 's+127.0.0.1+0.0.0.0+g' /etc/systemd/system/kube-scheduler.service
# systemctl daemon-reload
# systemctl restart kube-controller-manager.service
# systemctl restart kube-scheduler.service 

# 我这里第二台master  10.0.1.202
# sed -ri 's+127.0.0.1+0.0.0.0+g' /etc/systemd/system/kube-controller-manager.service 
# sed -ri 's+127.0.0.1+0.0.0.0+g' /etc/systemd/system/kube-scheduler.service
# systemctl daemon-reload
# systemctl restart kube-controller-manager.service
# systemctl restart kube-scheduler.service 

# 获取下metrics指标看看
curl 10.0.1.201:10251/metrics
curl 10.0.1.201:10252/metrics

然后因为K8s的这两上核心组件我们是以二进制形式部署的,为了能让K8s上的prometheus能发现,我们还需要来创建相应的service和endpoints来将其关联起来

注意:我们需要将endpoints里面的NODE IP换成我们实际情况的

apiVersion: v1
kind: Service
metadata:
  namespace: kube-system
  name: kube-controller-manager
  labels:
    k8s-app: kube-controller-manager
spec:
  type: ClusterIP
  clusterIP: None
  ports:
  - name: http-metrics
    port: 10252
    targetPort: 10252
    protocol: TCP

---
apiVersion: v1
kind: Endpoints
metadata:
  labels:
    k8s-app: kube-controller-manager
  name: kube-controller-manager
  namespace: kube-system
subsets:
- addresses:
  - ip: 10.0.1.201
  - ip: 10.0.1.202
  ports:
  - name: http-metrics
    port: 10252
    protocol: TCP

---

apiVersion: v1
kind: Service
metadata:
  namespace: kube-system
  name: kube-scheduler
  labels:
    k8s-app: kube-scheduler
spec:
  type: ClusterIP
  clusterIP: None
  ports:
  - name: http-metrics
    port: 10251
    targetPort: 10251
    protocol: TCP

---
apiVersion: v1
kind: Endpoints
metadata:
  labels:
    k8s-app: kube-scheduler
  name: kube-scheduler
  namespace: kube-system
subsets:
- addresses:
  - ip: 10.0.1.201
  - ip: 10.0.1.202
  ports:
  - name: http-metrics
    port: 10251
    protocol: TCP

将上面的yaml配置保存为repair-prometheus.yaml,然后创建它

kubectl apply -f repair-prometheus.yaml

创建完成后确认下

# kubectl -n kube-system get svc |egrep 'controller|scheduler'
kube-controller-manager   ClusterIP   None            <none>        10252/TCP                      58s
kube-scheduler            ClusterIP   None            <none>        10251/TCP                      58s

记得还要修改一个地方

# kubectl -n monitoring edit servicemonitors.monitoring.coreos.com kube-scheduler 
# 将下面两个地方的https换成http
    port: https-metrics
    scheme: https

# kubectl -n monitoring edit servicemonitors.monitoring.coreos.com kube-controller-manager
# 将下面两个地方的https换成http
    port: https-metrics
    scheme: https

然后再返回prometheus UI处,耐心等待几分钟,就能看到已经被发现了

monitoring/kube-controller-manager/0 (2/2 up) 
monitoring/kube-scheduler/0 (2/2 up) 



相关推荐

3分钟让你的项目支持AI问答模块,完全开源!

hello,大家好,我是徐小夕。之前和大家分享了很多可视化,零代码和前端工程化的最佳实践,今天继续分享一下最近开源的Next-Admin的最新更新。最近对这个项目做了一些优化,并集成了大家比较关注...

干货|程序员的副业挂,12个平台分享

1、D2adminD2Admin是一个完全开源免费的企业中后台产品前端集成方案,使用最新的前端技术栈,小于60kb的本地首屏js加载,已经做好大部分项目前期准备工作,并且带有大量示例代码,助...

Github标星超200K,这10个可视化面板你知道几个

在Github上有很多开源免费的后台控制面板可以选择,但是哪些才是最好、最受欢迎的可视化控制面板呢?今天就和大家推荐Github上10个好看又流行的可视化面板:1.AdminLTEAdminLTE是...

开箱即用的炫酷中后台前端开源框架第二篇

#头条创作挑战赛#1、SoybeanAdmin(1)介绍:SoybeanAdmin是一个基于Vue3、Vite3、TypeScript、NaiveUI、Pinia和UnoCSS的清新优...

搭建React+AntDeign的开发环境和框架

搭建React+AntDeign的开发环境和框架随着前端技术的不断发展,React和AntDesign已经成为越来越多Web应用程序的首选开发框架。React是一个用于构建用户界面的JavaScrip...

基于.NET 5实现的开源通用权限管理平台

??大家好,我是为广大程序员兄弟操碎了心的小编,每天推荐一个小工具/源码,装满你的收藏夹,每天分享一个小技巧,让你轻松节省开发效率,实现不加班不熬夜不掉头发,是我的目标!??今天小编推荐一款基于.NE...

StreamPark - 大数据流计算引擎

使用Docker完成StreamPark的部署??1.基于h2和docker-compose进行StreamPark部署wgethttps://raw.githubusercontent.com/a...

教你使用UmiJS框架开发React

1、什么是Umi.js?umi,中文可发音为乌米,是一个可插拔的企业级react应用框架。你可以将它简单地理解为一个专注性能的类next.js前端框架,并通过约定、自动生成和解析代码等方式来辅助...

简单在线流程图工具在用例设计中的运用

敏捷模式下,测试团队的用例逐渐简化以适应快速的发版节奏,大家很早就开始运用思维导图工具比如xmind来编写测试方法、测试点。如今不少已经不少利用开源的思维导图组件(如百度脑图...)来构建测试测试...

【开源分享】神奇的大数据实时平台框架,让Flink&amp;Spark开发更简单

这是一个神奇的框架,让Flink|Spark开发更简单,一站式大数据实时平台!他就是StreamX!什么是StreamX大数据技术如今发展的如火如荼,已经呈现百花齐放欣欣向荣的景象,实时处理流域...

聊聊规则引擎的调研及实现全过程

摘要本期主要以规则引擎业务实现为例,陈述在陌生业务前如何进行业务深入、调研、技术选型、设计及实现全过程分析,如果你对规则引擎不感冒、也可以从中了解一些抽象实现过程。诉求从硬件采集到的数据提供的形式多种...

【开源推荐】Diboot 2.0.5 发布,自动化开发助理

一、前言Diboot2.0.5版本已于近日发布,在此次发布中,我们新增了file-starter组件,完善了iam-starter组件,对core核心进行了相关优化,让devtools也支持对IAM...

微软推出Copilot Actions,使用人工智能自动执行重复性任务

IT之家11月19日消息,微软在今天举办的Ignite大会上宣布了一系列新功能,旨在进一步提升Microsoft365Copilot的智能化水平。其中最引人注目的是Copilot...

Electron 使用Selenium和WebDriver

本节我们来学习如何在Electron下使用Selenium和WebDriver。SeleniumSelenium是ThoughtWorks提供的一个强大的基于浏览器的开源自动化测试工具...

Quick &#39;n Easy Web Builder 11.1.0设计和构建功能齐全的网页的工具

一个实用而有效的应用程序,能够让您轻松构建、创建和设计个人的HTML网站。Quick'nEasyWebBuilder是一款全面且轻巧的软件,为用户提供了一种简单的方式来创建、编辑...