百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 博客教程 > 正文

Micro-YOLO:探索目标检测压缩模型的有效方法(附论文下载)

connygpt 2024-12-20 11:48 2 浏览

关注并星标

从此不迷路

计算机视觉研究院


公众号ID|ComputerVisionGzq

论文地址:https://www.scitepress.org/Papers/2021/102344/102344.pdf

计算机视觉研究院专栏

作者:Edison_G

深度学习模型在目标检测的性能上取得了重大突破。然而,在传统模型中,例如Faster R-CNN和YOLO,由于计算资源有限和功率预算紧张,这些网络的规模使其难以部署在嵌入式移动设备上


一、前言


深度学习模型在目标检测的性能上取得了重大突破。然而,在传统模型中,例如Faster R-CNN和YOLO,由于计算资源有限和功率预算紧张,这些网络的规模使其难以部署在嵌入式移动设备上。

深度学习领域的加速发展极大地促进了目标检测的发展,其在人脸检测、自动驾驶、机器人视觉和视频监控等方面的广泛应用。随着目标检测的蓬勃发展,近年来提出了几种深度卷积神经网络模型,例如R-CNN、SSD和YOLO等。然而,随着网络变得越来越复杂,这些模型的规模不断增加,这使得在现实生活中将这些模型部署到嵌入式设备上变得越来越困难。因此,开发一种高效快速的物体检测模型以在不影响目标检测质量的情况下减小参数大小至关重要。


二、背景


随着目标检测网络系列不断变得更加复杂,减少权重参数和计算成本变得很重要。模型压缩方法分为低秩分解、知识蒸馏、剪枝和量化,其中剪枝已被证明是通过去除冗余参数来降低网络复杂度的有效方法(A survey of model compression and acceleration for deep neural networks)。

为了解决目标检测网络问题,有几种最先进的工作技术可以减少YOLO架构中的参数数量。(YOLO-LITE: a real-time object detection algorithm optimized for non-GPU computers) 开发了YOLO-Lite网络,其中从YOLOv2-tiny中删除了批量归一化层以加速目标检测。该网络在PASCAL VOC 2007和COCO数据集上分别实现了33.81%12.26%的mAP。(Yolo nano: a highly compact you only look once convolutional neural network for object detection) 创建了一个高度紧凑的网络YOLO-nano,它是一个基于YOLO网络的8位量化模型,并在PASCAL VOC 2007数据集上进行了优化。该网络在PASCAL VOC 2007数据集上实现了3.18M模型大小69.1%mAP


三、概要


因此,研究者就提出了一种新的基于轻量级CNN的目标检测模型,即基于YOLOv3-Tiny的Micro-YOLO,它在保持检测性能的同时显着减少了参数数量和计算成本。研究者建议将YOLOv3-tiny网络中的卷积层替换为深度分布偏移卷积(DSConvhttps://arxiv.org/abs/1901.01928v1)和带有squeeze和excitation块的移动反向瓶颈卷积 (MBConv:主要源自于EfficientNet),并设计渐进式通道级剪枝算法以最小化数量参数并最大化检测性能。因此,与原始YOLOv3-tiny网络相比,所提出的Micro-YOLO网络将参数数量减少了3.46倍,乘法累加操作(MAC)减少了2.55倍,同时在COCO数据集上评估的mAP略微减少了0.7%。


四、新框架介绍


Micro-YOLO

为了减小网络的大小,研究者探索了可选择的轻量级卷积层来替代YOLO网络中的卷积层Conv。MobileNet网络采用两个轻量级卷积层(a)DSConv和(b)MBConv。

如上图(a) 所示,DSConv执行两种类型的卷积:(i) 深度卷积和 (ii) 逐点卷积,这可以显著降低网络的模型大小和计算成本。上图(b) 所示,MBConv的结构是一个1×1的channel expansion卷积,然后是深度卷积和一个1×1的channel reduction层。它利用squeeze和excitation块,这是一个分支,由squeeze阶段的全局平均池化操作和excitation阶段的两个小FC层组成在深度卷积和通道之间还原层。由于输出通道的数量不等于输入通道的数量,研究者在MBConv中移除了残差连接,MBConv层在输入和输出处提供紧凑的表示,同时在内部将输入扩展到更高维的特征空间以增加非线性变换的表达能力。因此,与DSconv层相比,MBconv层提供了更好的压缩网络,而不会降低检测精度。
这些层之间的计算成本,即Conv层(Cs)、DSConv层(Cds)和MBConv层(Cmb)可以分别用以下公式表示:

其中k表示内核大小,Cin表示输入通道数,Cout表示输出通道数,W和H表示特征图的宽度和高度,α和β分别表示MBConv中的扩展因子和缩减因子。

Progressive Channel Pruning

在确定新提出的Micro-YOLO网络的架构后,研究者可以通过使用剪枝技术进一步减少权重参数。在提出的工作中,研究者采用了粗粒度剪枝,因为DSConv和MBConv层主要由1×1内核大小组成,这为细粒度剪枝留下了最小的空间。(Rethinking the value of network pruning) 表明修剪后的架构本身,而不是一组继承的“重要”权重,对最终模型的效率更重要,这表明在某些情况下修剪可能是有用的一种架构搜索范式。因此,研究者提出了一种渐进式剪枝方法来在修改后的网络中搜索“更薄”的架构。具体伪代码流程如下:


五、实验


新提出的框架图

不同卷积类型和相同内核大小的不同输入通道所需的参数数量


不同卷积类型的参数量


内核大小探索结果。不同的条形表示内核大小的不同组合。为简单起见,仅以红色显示最佳内核大小组合,如下图:


最后看下检测效果:


? THE END

转载请联系本公众号获得授权


计算机视觉研究院学习群等你加入!


计算机视觉研究院主要涉及深度学习领域,主要致力于人脸检测、人脸识别,多目标检测、目标跟踪、图像分割等研究方向。研究院接下来会不断分享最新的论文算法新框架,我们这次改革不同点就是,我们要着重”研究“。之后我们会针对相应领域分享实践过程,让大家真正体会摆脱理论的真实场景,培养爱动手编程爱动脑思考的习惯!

计算机视觉研究院

公众号IDComputerVisionGzq


??











相关推荐

自学Python,写一个挨打的游戏代码来初识While循环

自学Python的第11天。旋转~跳跃~,我~闭着眼!学完循环,沐浴着while的光芒,闲来无事和同事一起扯皮,我说:“编程语言好神奇,一个小小的循环,竟然在生活中也可以找到原理和例子”,同事也...

常用的 Python 工具与资源,你知道几个?

最近几年你会发现,越来越多的人开始学习Python,工欲善其事必先利其器,今天纬软小编就跟大家分享一些常用的Python工具与资源,记得收藏哦!不然下次就找不到我了。1、PycharmPychar...

一张思维导图概括Python的基本语法, 一周的学习成果都在里面了

一周总结不知不觉已经自学Python一周的时间了,这一周,从认识Python到安装Python,再到基本语法和基本数据类型,对于小白的我来说无比艰辛的,充满坎坷。最主要的是每天学习时间有限。只...

三日速成python?打工人,小心钱包,别当韭菜

随着人工智能的热度越来越高,许多非计算机专业的同学们也都纷纷投入到学习编程的道路上来。而Python,作为一种相对比较容易上手的语言,也越来越受欢迎。网络上各类网课层出不穷,各式广告令人眼花缭乱。某些...

Python自动化软件测试怎么学?路线和方法都在这里了

Python自动化测试是指使用Python编程语言和相关工具,对软件系统进行自动化测试的过程。学习Python自动化测试需要掌握以下技术:Python编程语言:学习Python自动化测试需要先掌握Py...

Python从放弃到入门:公众号历史文章爬取为例谈快速学习技能

这篇文章不谈江流所专研的营销与运营,而聊一聊技能学习之路,聊一聊Python这门最简单的编程语言该如何学习,我完成的第一个Python项目,将任意公众号的所有历史文章导出成PDF电子书。或许我这个Py...

【黑客必会】python学习计划

阅读Python文档从Python官方网站上下载并阅读Python最新版本的文档(中文版),这是学习Python的最好方式。对于每个新概念和想法,请尝试运行一些代码片段,并检查生成的输出。这将帮助您更...

公布了!2025CDA考试安排

CDA数据分析师报考流程数据分析师是指在不同行业中专门从事行业数据搜集、整理、分析依据数据作出行业研究评估的专业人员CDA证书分为1-3级,中英文双证就业面广,含金量高!!?报考条件:满18...

一文搞懂全排列、组合、子集问题(经典回溯递归)

原创公众号:【bigsai】头条号:程序员bigsai前言Hello,大家好,我是bigsai,longtimenosee!在刷题和面试过程中,我们经常遇到一些排列组合类的问题,而全排列、组合...

「西法带你学算法」一次搞定前缀和

我花了几天时间,从力扣中精选了五道相同思想的题目,来帮助大家解套,如果觉得文章对你有用,记得点赞分享,让我看到你的认可,有动力继续做下去。467.环绕字符串中唯一的子字符串[1](中等)795.区...

平均数的5种方法,你用过几种方法?

平均数,看似很简单的东西,其实里面包含着很多学问。今天,分享5种经常会用到的平均数方法。1.算术平均法用到最多的莫过于算术平均法,考试平均分、平均工资等等,都是用到这个。=AVERAGE(B2:B11...

【干货收藏】如何最简单、通俗地理解决策树分类算法?

决策树(Decisiontree)是基于已知各种情况(特征取值)的基础上,通过构建树型决策结构来进行分析的一种方式,是常用的有监督的分类算法。决策树算法是机器学习中的一种经典算法,它通过一系列的规则...

面试必备:回溯算法详解

我们刷leetcode的时候,经常会遇到回溯算法类型题目。回溯算法是五大基本算法之一,一般大厂也喜欢问。今天跟大家一起来学习回溯算法的套路,文章如果有不正确的地方,欢迎大家指出哈,感谢感谢~什么是回溯...

「机器学习」决策树——ID3、C4.5、CART(非常详细)

决策树是一个非常常见并且优秀的机器学习算法,它易于理解、可解释性强,其可作为分类算法,也可用于回归模型。本文将分三篇介绍决策树,第一篇介绍基本树(包括ID3、C4.5、CART),第二篇介绍Ran...

大话AI算法: 决策树

所谓的决策树算法,通俗的说就是建立一个树形的结构,通过这个结构去一层一层的筛选判断问题是否好坏的算法。比如判断一个西瓜是否好瓜,有20条西瓜的样本提供给你,让你根据这20条(通过机器学习)建立起...