百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 博客教程 > 正文

Databricks 第6篇:SparkSQL维护数据库和表

connygpt 2024-09-06 19:43 13 浏览

Spark SQL 表的命名方式是db_name.table_name,只有数据库名称和数据表名称。如果没有指定db_name而直接引用table_name,实际上是引用default 数据库下的表。在Spark SQL中,数据库只是指定表文件存储的路径,每个表都可以使用不同的文件格式来存储数据,从这个角度来看,可以把database看作是Databricks 表的上层目录,用于组织数据表及其文件。

在python语言环境中,可以使用 %sql 切换到SQL命令模式:

%sql

一,管理数据库

常用的数据库命令,切换当前的数据库、显示数据库列表、表列表、视图列表和列信息:

use db_name
show databases 
show tables [in db_name]
show views [in db_name]
show columns in db_name.table_name

1,创建数据库

创建数据库,通过LOCATION 指定数据库文件存储的位置:

CREATE { DATABASE | SCHEMA } [ IF NOT EXISTS ] database_name
    [ LOCATION database_directory ]

LOCATION database_directory:指定存储数据库文件系统的路径,如果底层的文件系统中不存在该路径,那么需要先创建该目录。如果未指定LOCATION参数,那么使用默认的数据仓库目录来创建数据库,默认的数据仓库目录是由静态配置参数spark.sql.warehouse.dir指定的

2,查看数据库的描述

{ DESC | DESCRIBE } DATABASE [ EXTENDED ] db_name

extended 选项表示查看数据库的扩展属性。

3,删除数据库

DROP { DATABASE | SCHEMA } [ IF EXISTS ] dbname [ RESTRICT | CASCADE ]

IF EXISTS:该选项表示在数据库不存在时,DROP操作不会引发异常。
RESTRICT:该选项表示不能删除非空数据库,并在默认情况下启用。
CASCADE:该选项表示删除数据库中所有关联的表和函数。

二,创建数据表

表有两种作用域:全局和本地,全局表可以在所有的Cluster中引用,而本地表只能在本地的Cluster中引用,被称作临时视图。用户可以从DBFS中的文件或存储在任何受支持数据源中的数据来填充表。

在创建表时,需要指定存储表数据的文件格式,以及表数据文件存储的位置。

1,使用数据源创建表(标准的CREATE TABLE命令)

创建表的语法,注意:如果数据库中已存在同名的表,则会引发异常。

CREATE TABLE [ IF NOT EXISTS ] [db_name].table_name
    [ ( col_name1 col_type1, ... ) ]
    USING data_source
    [ OPTIONS ( key1=val1, key2=val2, ... ) ]
    [ PARTITIONED BY ( col_name1, col_name2, ... ) ]
    [ CLUSTERED BY ( col_name3, col_name4, ... )
        [ SORTED BY ( col_name [ ASC | DESC ], ... ) ]
        INTO num_buckets BUCKETS ]
    [ LOCATION path ]
    [ AS select_statement ]

参数注释:

  • IF NOT EXISTS:如果数据库中已存在同名的表,则不会执行任何操作。
  • USING data_source:用于表的文件格式,data_source 必须是 TEXT、CSV、JSON、JDBC、PARQUET、ORC、HIVE、DELTA 或 LIBSVM 中的一个,或 org.apache.spark.sql.sources.DataSourceRegister 的自定义实现的完全限定的类名。支持使用 HIVE 创建 Hive SerDe 表。 你可以使用 OPTIONS 子句指定 Hive 特定的 file_format 和 row_format,这是不区分大小写的字符串映射。选项键为 FILEFORMAT、INPUTFORMAT、OUTPUTFORMAT、SERDE、FIELDDELIM、ESCAPEDELIM、MAPKEYDELIM 和 LINEDELIM。
  • OPTIONS:用于优化表的行为或配置 HIVE 表的表选项。
  • PARTITIONED BY (col_name1, col_name2, ...):按指定的列对创建的表进行分区,将为每个分区创建一个目录。
  • CLUSTERED BY col_name3, col_name4, ...):按照指定的列,把表中的分区分割到固定数目的 Bucket中,该选项通常与分区操作配合使用。delta格式的文件不支持该子句。SORTED BY:数据在buckets中的排序方式,默认是升序ASC。INTO num_buckets BUCKETS:bucket是一个优化技术,使用bucket(和bucket 列)来确定数据的分区,并避免数据洗牌(data shuffle),使数据变得有序。
  • LOCATION path:用于存储表数据的目录,可以指定分布式存储上的路径。
  • AS select_statement:使用来自 SELECT 语句的输出数据填充该表。
  • 2,使用Delta Lake(增量Lake)创建表

    用户可以使用标准的CREATE TABLE命令来创建存储在delta lake中的表,除了标准的创建delta table的命令之外,还可以使用以下的语法来创建delta表:

    CREATE [OR REPLACE] TABLE table_identifier[(col_name1 col_type1 [NOT NULL], ...)]
      USING DELTA
      [LOCATION <path-to-delta-files>]

    table_identifier 有两种格式:

  • [database_name.] table_name: 表的名称
  • delta.`delta_file_path` :在指定的路径上创建表,而不在元存储(metastore)中创建条目。
  • LOCATION <path-to-delta-files> :如果指定的 LOCATION 已包含增量 lake 中存储的数据,Delta lake 会执行以下操作:

    如果仅指定了表名称和位置,例如:

    CREATE TABLE events
      USING DELTA
      LOCATION '/mnt/delta/events'

    Hive 元存储中的表会自动继承现有数据的架构、分区和表属性,此功能可用于把数据“导入”到元存储(metastore)中。

    如果你指定了任何配置(架构、分区或表属性),那么 Delta Lake 会验证指定的内容是否与现有数据的配置完全匹配。如果指定的配置与数据的配置并非完全匹配,则 Delta Lake 会引发一个描述差异的异常。

    3,创建表的示例

    --Use data source
    CREATE TABLE student (id INT, name STRING, age INT) USING PARQUET;
    
    --Use data from another table
    CREATE TABLE student_copy USING PARQUET
        AS SELECT * FROM student;
    
    --Omit the USING clause, which uses the default data source (parquet by default)
    CREATE TABLE student (id INT, name STRING, age INT);
    
    --Create partitioned and bucketed table
    CREATE TABLE student (id INT, name STRING, age INT)
        USING PARQUET
        PARTITIONED BY (age)
        CLUSTERED BY (Id) INTO 4 buckets;

    三,和数据源的交互

    数据源表的作用类似于指向基础数据源的指针,例如,您可以使用JDBC数据源在Azure Databricks中创建表foo,该表指向MySQL中的表bar。当读写表foo时,实际上就是读写表bar。

    通常,CREATE TABLE会创建一个“指针”,并且必须确保它指向的对象是存在的,一个例外是文件源,例如Parquet,JSON,如果您未指定LOCATION选项,那么Azure Databricks会创建一个默认表位置。

    对于CREATE TABLE AS SELECT,Azure Databricks使用select查询的输出数据来覆盖(overwrite)底层的数据源,以确保创建的表包含与输入查询完全相同的数据。

    四,向表插入数据

    用户可以向表中插入数据,也可以向Spark支持的文件中插入数据。

    1,向表中插入数据

    使用INSERT INTO 命令向表中追加数据,不会影响表中的现有数据;使用INSERT OVERWRITE 命令,会覆盖表中的现有数据。

    INSERT INTO [ TABLE ] table_identifier [ partition_spec ]
        { VALUES ( { value | NULL } [ , ... ] ) [ , ( ... ) ] | query }
    
    INSERT OVERWRITE [ TABLE ] table_identifier [ partition_spec [ IF NOT EXISTS ] ]
        { VALUES ( { value | NULL } [ , ... ] ) [ , ( ... ) ] | query }

    参数注释:

  • table_identifier:[database_name.] table_name:表名称,可选择使用数据库名称进行限定。delta.<路径列表> :现有增量表的位置。
  • partition_spec:一个可选参数,用于指定分区的键/值对的逗号分隔列表。语法:PARTITION ( partition_col_name = partition_col_val [ , ... ] )
  • 值 ( {value |NULL} [,...] ) [, ( ... ) ]:要插入的值。 显式指定的值或 NULL 。 使用逗号分隔子句中的每个值。 您可以指定多个值集来插入多个行。
  • query:生成要插入的行的查询,可用的查询格式:SELECT语句、TABLE语句、FROM语句
  • 举个例子,创建表之后,通过VALUES子句向表中插入少量的值,也可以通过 SELECT 子句、TABLE和FROM向表中批量插入数据。

    CREATE TABLE students (name VARCHAR(64), address VARCHAR(64), student_id INT)
        USING PARQUET PARTITIONED BY (student_id);
    
    -- VALUES
    INSERT INTO students VALUES
        ('Bob Brown', '456 Taylor St, Cupertino', 222222),
        ('Cathy Johnson', '789 Race Ave, Palo Alto', 333333);
    
    -- SELECT
    INSERT INTO students PARTITION (student_id = 444444)
        SELECT name, address FROM persons WHERE name = "Dora Williams";
    
    -- TABLE
    INSERT INTO students TABLE visiting_students;
    
    -- FROM
    INSERT INTO students
         FROM applicants SELECT name, address, id applicants WHERE qualified = true;

    2,向文件中插入数据

    使用给定的Spark文件格式用新值覆盖目录中的现有数据,也就是说,向目录中插入数据时,只能用新数据覆盖现有的数据:

    INSERT OVERWRITE [ LOCAL ] DIRECTORY [ directory_path ]
        USING file_format [ OPTIONS ( key = val [ , ... ] ) ]
        { VALUES ( { value | NULL } [ , ... ] ) [ , ( ... ) ] | query }

    参数注释:

  • directory_path:目标目录,还可以使用在中指定 OPTIONS path 。 LOCAL关键字用于指定目录位于本地文件系统中。
  • file_format:要用于插入的文件格式。 有效选项包括 TEXT 、 CSV 、 JSON 、 JDBC 、 PARQUET 、ORC、HIVE、LIBSVM,或者自定义实现的完全限定类名 org.apache.spark.sql.execution.datasources.FileFormat 。
  • OPTIONS ( key = val [,...] ):指定用于写入文件格式的一个或多个选项。
  • 示例,使用新数据覆盖目录中的数据:

    INSERT OVERWRITE DIRECTORY '/tmp/destination'
        USING parquet
        OPTIONS (col1 1, col2 2, col3 'test')
        SELECT * FROM test_table;
    
    INSERT OVERWRITE DIRECTORY
        USING parquet
        OPTIONS ('path' '/tmp/destination', col1 1, col2 2, col3 'test')
        SELECT * FROM test_table;

    相关推荐

    3分钟让你的项目支持AI问答模块,完全开源!

    hello,大家好,我是徐小夕。之前和大家分享了很多可视化,零代码和前端工程化的最佳实践,今天继续分享一下最近开源的Next-Admin的最新更新。最近对这个项目做了一些优化,并集成了大家比较关注...

    干货|程序员的副业挂,12个平台分享

    1、D2adminD2Admin是一个完全开源免费的企业中后台产品前端集成方案,使用最新的前端技术栈,小于60kb的本地首屏js加载,已经做好大部分项目前期准备工作,并且带有大量示例代码,助...

    Github标星超200K,这10个可视化面板你知道几个

    在Github上有很多开源免费的后台控制面板可以选择,但是哪些才是最好、最受欢迎的可视化控制面板呢?今天就和大家推荐Github上10个好看又流行的可视化面板:1.AdminLTEAdminLTE是...

    开箱即用的炫酷中后台前端开源框架第二篇

    #头条创作挑战赛#1、SoybeanAdmin(1)介绍:SoybeanAdmin是一个基于Vue3、Vite3、TypeScript、NaiveUI、Pinia和UnoCSS的清新优...

    搭建React+AntDeign的开发环境和框架

    搭建React+AntDeign的开发环境和框架随着前端技术的不断发展,React和AntDesign已经成为越来越多Web应用程序的首选开发框架。React是一个用于构建用户界面的JavaScrip...

    基于.NET 5实现的开源通用权限管理平台

    ??大家好,我是为广大程序员兄弟操碎了心的小编,每天推荐一个小工具/源码,装满你的收藏夹,每天分享一个小技巧,让你轻松节省开发效率,实现不加班不熬夜不掉头发,是我的目标!??今天小编推荐一款基于.NE...

    StreamPark - 大数据流计算引擎

    使用Docker完成StreamPark的部署??1.基于h2和docker-compose进行StreamPark部署wgethttps://raw.githubusercontent.com/a...

    教你使用UmiJS框架开发React

    1、什么是Umi.js?umi,中文可发音为乌米,是一个可插拔的企业级react应用框架。你可以将它简单地理解为一个专注性能的类next.js前端框架,并通过约定、自动生成和解析代码等方式来辅助...

    简单在线流程图工具在用例设计中的运用

    敏捷模式下,测试团队的用例逐渐简化以适应快速的发版节奏,大家很早就开始运用思维导图工具比如xmind来编写测试方法、测试点。如今不少已经不少利用开源的思维导图组件(如百度脑图...)来构建测试测试...

    【开源分享】神奇的大数据实时平台框架,让Flink&amp;Spark开发更简单

    这是一个神奇的框架,让Flink|Spark开发更简单,一站式大数据实时平台!他就是StreamX!什么是StreamX大数据技术如今发展的如火如荼,已经呈现百花齐放欣欣向荣的景象,实时处理流域...

    聊聊规则引擎的调研及实现全过程

    摘要本期主要以规则引擎业务实现为例,陈述在陌生业务前如何进行业务深入、调研、技术选型、设计及实现全过程分析,如果你对规则引擎不感冒、也可以从中了解一些抽象实现过程。诉求从硬件采集到的数据提供的形式多种...

    【开源推荐】Diboot 2.0.5 发布,自动化开发助理

    一、前言Diboot2.0.5版本已于近日发布,在此次发布中,我们新增了file-starter组件,完善了iam-starter组件,对core核心进行了相关优化,让devtools也支持对IAM...

    微软推出Copilot Actions,使用人工智能自动执行重复性任务

    IT之家11月19日消息,微软在今天举办的Ignite大会上宣布了一系列新功能,旨在进一步提升Microsoft365Copilot的智能化水平。其中最引人注目的是Copilot...

    Electron 使用Selenium和WebDriver

    本节我们来学习如何在Electron下使用Selenium和WebDriver。SeleniumSelenium是ThoughtWorks提供的一个强大的基于浏览器的开源自动化测试工具...

    Quick &#39;n Easy Web Builder 11.1.0设计和构建功能齐全的网页的工具

    一个实用而有效的应用程序,能够让您轻松构建、创建和设计个人的HTML网站。Quick'nEasyWebBuilder是一款全面且轻巧的软件,为用户提供了一种简单的方式来创建、编辑...